A novel finite-element based algorithm for impedance tomography of arbitrarily shaped trees

Thomas Günther¹ & Carsten Rücker²

¹Leibniz Institute for Applied Geosciences, Hannover (Germany)
²Institute of Geophysics and Geology, University of Leipzig (Germany)

Acapulco, 23.05.2007
Technique (after Günther et al. (2006))

- Finite element based forward calculation
- Unstructured meshes (triangles, tetrahedra)
- Allows for any 2d or 3d geometry (here tree shape)
- Three meshes yield efficacy
- Enhanced minimization approach (model+boundary control)

Triple-mesh inversion

- Inversion on resolution-optimized mesh
- Forward & Jacobian calculation on moderate mesh
- Calculation of primary potentials on refined mesh
2d examples
Hollow lime tree

Tree disk image
Inversion result

clearly shows high-resistive interior
2d examples

Rotten haw tree

Tree disk image

Inversion result

shows wet decay as well as dried core
2d examples
Influence of tree shape - Data

Triangle tree - apparent resistivities

Calculation of analytical and numerical geometry factors

Data with circle G Pure geometry effect Data with calculated G

AGU 2007 (Acapulco): Günther & Rücker
2d examples
Influence of tree shape - Model

Inversion on circle geometry

Inversion on real geometry
3d example
Ash tree

Injection and broadening of mycosis
Objective
Investigation of time-dependent processes

Problem
absolute differences are often very small

Solution
full solution for first frame
reference model technique for subsequent
Time lapse ERT

Example - Lime tree

Data collection
- 24 electrode
- 264 single data
- 1 frame every 10 minutes
- more than 24h data

Objective
1. Dynamics of solute transport (daily variations)
2. Influence of solar radiation

Lime tree absolute resistivities
Time lapse ERT

Example - Lime tree

1-day-cycle: relative differences in %
Joint inversion

Method

Problem
Ambiguity of the inverse problem, i.e. a variety of models are able to explain the data

Approach
Use different physical measurements, e.g. impedance and travel time data

Solution
Resistivity and Velocity are independent but expected to show similar structures \(\Rightarrow\) structural coupling by robust modeling techniques (details see talk and poster)

Data
Impedance data and ultrasonic travel times on 16 electrodes/geophones
Joint inversion

Example: Hollow tree

Separate inversion - resistivity

Joint inversion - velocity
Joint inversion

Example: Hollow tree

Joint inversion - resistivity

Joint inversion - velocity
Summary

- ERT is a powerful tool to image tree structures
- Unstructured meshes allow arbitrary geometry
- Consideration of tree shape is essential
- 3D surveys are possible
- Joint inversion with travel time tomography improves results
- Time lapse inversion yields a concept of processes

Thanks to

Niels Hoffmann and Dirk Bieker (HAWK Göttingen)
Lothar Göcke (ARGUS electronic GmbH, Rostock)

www.resistivity.net

2D GUI based software freely available, 3D part of dcfemlib