Relationship between electrical and hydraulic properties of reservoir rocks

DFG SPP 1135: Dynamics of sedimentary basins

Georg Noever, Stephanie Heikamp, Michael Poelchau, H. Dürrast*, S. Siegesmund*
Mineralogisch-Petrologisches Institut, Bonn
* IGDL, Göttingen

- Outline
 - Drillings: Schleswig, Fehmarn, Oldenbüttel, Glückstadt, Lingen
 - Petrophysics:
 - density,
 - porosity
 - pressure dependence of the permeability,
 - complex electrical conductivity and its pressure dependence
 - relation to transport properties
- Conclusion & cooperations
Physical properties of reservoir rocks

(elastic, transport, mechanical, electrical, thermal, magnetic, density, etc.)

Lithological Parameters (intrinsic)

- Single crystal properties
- Mineral composition
- Rock fabric
 (a) components
 - type, size, shape, arrangement
 - bedding/layering
 - shape preferred orientation (SPO)
 - lattice preferred orientation (LPO)
 (b) pore space
 - type, size, shape, arrangement
 - degree and type of saturation
 (c) fractures
 - type and filling
 - fracture fabric
 (d) networks
 - of open pores and/or open fractures
 (e) stylolites
 - type and composition
 - stylolite fabric

Physical Parameters (extrinsic)

- Pressure
 - effective pressure
 (lithostatic pressure, differential stress, pore fluid (reservoir) pressure)
- Temperature

Dürrast, 1997
Petrophysics: Density

Rotliegendes: conglomerate: clay, sandstone, coarse silt

- Matrix density
- Porosity
- Mineralogical composition
Petrophysics: Porosity
Fehmarn Z1; Schleswig Z1; Glückstadt T1

1. Archimedian,
2. Volumetric
Petrophysics: Permeability Pressure Dependence; instationary technique

- Sample diameter: 10 - 45 mm
- Sample length: 10 - 60 mm
- Confining pressure: up to 350 MPa
- Flow media: gas (argon), fluids (water, oil)
- Permeability range: mD - nD (10⁻¹⁵ - 10⁻二十五 m²)
Petrophysics results:
Pressure Dependence of the Permeability Anisotropy

Lingen limestone

Fehmarn Anisotropy
Permeability: Pressure dependence; Anisotropy
Sandstones from a tight gas reservoir, NW Germany
Petrophysics

Electrical Properties and their relation

Table: Physical Property

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Density</th>
<th>Magnetic Susceptibility</th>
<th>Electrical Resistivity</th>
<th>Dielectric Permittivity</th>
<th>Seismic Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity (pore, fracture)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic mineral content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic mineral content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic object</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsurface structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of interconnection

- **R konstant**
 - ε steigt

- **R fällt**
 - ε steigt

Electrolyte, Double layer

<table>
<thead>
<tr>
<th>Degree of relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong</td>
</tr>
</tbody>
</table>

R.E.V.

- σ_f
- Free Electrolyte
- E.D.L.: Electrical Diffuse layer

S.P.

- Stern Plane
- Mineral surface
- Na$^+$
- CF

Local conductivity (L.D.):

- σ_f
- x_0
- σ_{m}
- $\sigma_{m} = 0$
Electrolytic Charge Transport – Model

Figure 1. Schematic representation of the electric double layer on the mineral surface. The parameters σ and σ_m are the effective conductivity of a representative elementary volume (REV), whereas σ_0 is the free electrolyte conductivity. The disturbed conductivity in the electrical diffuse layer can be taken into account by a specific conductance parameter $2Z$.
Complex Electrical Conductivity: 5Hz – 1MHz
Pressure Dependence

Abbildung 3.6: Parallelschichtmodell mit zugehörigem Ersatzschaltbild und Impedanzspektrum [27]
Pressurized dependence

Permeability

Volume conductivity
Crossplot: Porosity - Volume conductivity
Anisotropy

Anisotropy of electrical conductivity
Crossplot: Pressure Dependence
Permeability – Volume conductivity
Complex response: Measured data – Model

Interpretation:
- **RC-equivalent circuit** (2 relaxation model)
 - \((R_1||C_1)\) \((R_2||C_2)\)
 - bulk conductivity
 - surface conductivity
 - Relaxation time
 (time constant of polarisation)
Crossplot: pressure dependence of the relaxation time
Conclusion

Electrical rock properties depend on:

- petrophysical parameters, porosity, permeability, aspect ratio
- Fabric, texture, grain size distribution, metamorphic overprint
- Anisotropy of layering
- Degree of interconnection of the pores

But,

the correlation between electrical and hydraulic properties still requires further experiments.

RWTH, Aachen: Petrophysics, permeability, porosity, Data Base
Uni Münster: Electrical conductivity, correlation lab-borehole data
GFZ: BET surface, porosity
BGR: Carbon enhanced conductivity
Uni Göttingen: Correlation of lab data: Vp, Vs, permeability, el. Cond.